Workshop Report on

Alternative Media, Conditions and Raw Materials

DRAFT

July 1999

Foreword

A little over a year ago Joseph Breen from the Green Chemistry Institute (GCI), and Nancy Jackson and Robin Rogers, Chair and Chair-elect from the Industrial and Engineering Chemistry Division of The American Chemical Society (ACS) – came forward expressing an interest in sponsoring a set of industry-led workshops. The workshops, in line with Technology Vision 2020, would focus on the need for new alternative, or "green" synthetic pathways for the chemical industry. This expression of interest corresponded to several meetings we had just completed in which we explored ways that our offices might undertake some activities of mutual interest. The timing of the request from ACS and GCI couldn't have been better. It seemed only natural that with energy efficiency and pollution prevention improvements for the chemical industry so closely related, we would join together to support ACS' and GCI's interest in a series of workshop sessions. And now we are pleased to learn that the results of the sessions will be used by ACS' Corporation Associates as the basis for a Vision 2020 roadmap on chemical sciences covering alternative synthetic pathways.

It is our hope that the far reaching and creative ideas contained in this preliminary report will continue to inspire the chemical industry as it strives to work for common goals that save energy, make the most efficient use of this country's carbon-based resources, protect the environment, and ensure the vitality of the industry well into the 21st century.

Signed

Denise Swink
Deputy Assistant Secretary
for Industrial Technologies,
Energy Efficiency and Renewable Energy
U.S. Department of Energy

Signed

Joseph Carra Deputy Director Office of Pollution Prevention and Toxics Environmental Protection Agency

Dear Colleagues:

Technology Vision 2020 was published by the American Chemical Society (ACS) in 1996. The report, developed by several hundred U.S. technical and business leaders, and representatives from The Chemical Manufacturers Association (CMA), the Synthetic Organic Chemical Manufacturing Association (SOCMA), the Council for Chemical Research (CCR), the American Institute of Chemical Engineers (AIChE), and the ACS, describes a future where the chemical industry will lead the world in technology development, manufacturing and profitability. It will also be an industry that seeks opportunities to improve energy use and environmental stewardship by conducting breakthrough R&D. The Vision says the next millennium will see a chemical industry that promotes sustainable development by investing in technology that protects the environment and stimulates industrial growth while balancing economic needs and financial constraints. And the Vision calls for an industry that will set the standard for efficient use of energy and raw materials and work in seamless partnerships creating "virtual" laboratories for developing innovative technologies.

To this end our mutual organizations sponsored four industry-led workshops during 1998, as our contribution toward the goals of **Vision 2020**. The workshops brought the industrial, academic, and government research communities together to generate new ideas for developing alternative, environmentally benign, or "green" technologies. These gatherings allowed researchers from universities and government laboratories to speak directly with industrial process users and help solve their production problems as well as identify new opportunities for alternatives. Clearly, a collaboration among industry, academia, and government represents an important approach to leveraging available resources...those same resources that will be required to achieve an economic and environmentally-efficient chemical industry for the 21st century.

We *sincerely believe* that the subjects covered in these workshops, chemical synthesis and processing with alternative reaction media, conditions, and raw materials is central to the successful implementation and achievement of the **Vision 2020** goals. We *sincerely believe* that some of these new approaches to chemical processing represent a better way to protect our environment, save energy and make the most efficient use of our carbon-based resources. We *sincerely believe* that these ideas for new technologies will enable a greater improvement in human and environmental health than the technologies currently in place. And finally we *believe* that these efficiencies will result in reductions in toxic dispersions and the energy and material intensity of goods and services; improvements in product durability and material recyclability; and an increase in both the sustainable use of renewable resources and the service intensity of goods and services.¹

This report represents results of all four workshops. We thank the Energy Department's Office of Industrial Technologies (OIT) and Environmental Protection Agency's Office of Pollution Prevention and Toxics (OPPT) for their support. We hope these workshops will make a contribution toward achieving the industry's **Vision**, layout some of the ground work needed to build a comprehensive national research agenda, and, in turn, help change the way people think about the chemical industry. The chemical community's work toward a roadmap, however, does not end here and we urge you to keep informed and become involved in this ongoing process. Further information about **Vision 2020** activities, including the Technology Roadmaps and outcomes when available, can be found on the ACS I&EC webpage at http://www.aiche.org/cwrt/projects/, and the CCR site at http://www.cerhq.org/v2020/.

Joseph J. Breen Executive Director The Green Chemistry Institute

Robin D. Rogers

¹ <u>Eco-efficiency: The Business Link to Sustainable Development,</u> Livio D. Simone & Frank Popoff, World Business Council for Sustainable Development, MIT Press, p.56, 1977.

Acknowledgments

These workshops would not have been possible without the support of the following organizations:

American Chemical Society,
Industrial & Engineering Chemistry Division
Green Chemistry Institute
Electric Power Research Institute
University of Massachusetts

- National Environmental Technology for Waste Prevention Institute
- Center for Industry Research on Polymers

U.S. Department of Energy

U.S. Environmental Protection Agency

In addition, acknowledgment is made to Energetics, Incorporated, who served as facilitators for the individual workshops and prepared the final report.

Contributors

Industry

A.E. Staley Manufacturing

ARCO Chemical

AGA Gas

Air Products & Chemicals

Akzo-Nobel

Autoclave Engineers

BCI

BF Goodrich Biofine

BOC Gases

Chemical Information Services

Cryo Dynamics Degussa

DOW Chemical

DuPont

Eastman Chemical

Electric Power Research Institute

Electrolux

Eltron Research Inc. Fedegari Autoclavi Ford Motor Company

Genentech GE Plastics

Global Technologies Green Chemistry Institute Isopro International

Itochu Aviation

Kellogg, Brown & Root, Inc.

MiCell Technologies

Midwest Research Institute

Mobil Technology Company

Monsanto

Montec Associates

National Center for Manufacturing Sciences

Olin Corporation Organic Technologies Phillips Petroleum PPG Industries

Praxair

Proctor & Gamble RAND Corporation

Raytheon

Research Triangle Institute RR Street & Company Sciance Consulting Smith-Kline-Beecham

SRI

Supramics Thar Designs

3M Company

Union Carbide

Westinghouse-Savannah River Company

Witteman

Universities

Carnegie-Mellon University

Cornell University

Northwestern University

Pennsylvania State University

Polytechnic University

Prairie View A&M University

Purdue University

Rensselaer Polytechnic Institute

Queens University, Belfast, Ireland Sam Houston State University

Texas A&M University

Tufts University

Tulane University

U. of Alabama

U. of California at Davis

U. of Colorado

U. of Kentucy at Louisville

U. of Massachusetts

U. of Nevada

U. of North Carolina

U. of Pittsburgh

U. of South Carolina

U. of Texas

U. of Twente, Netherlands

U. of Western Ontario

National Laboratories

Argonne National Laboratory

Idaho National Engineering Laboratory

Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

National Renewable Energy Laboratory

Oak Ridge National Laboratory

Pacific Northwest National Laboratory

Sandia National Laboratory

Government

Environment Canada

National Institute of Standards & Technology

New York State Energy Research &

Development Agency

U.S. Department of Energy

U.S. Environmental Protection Agency

Table of Contents

1.0	Introduction	. 1
2.0	Barriers to Development of Alternative Technology	. 5
3.0	Research Needs for Alternative Technology	21
Appen	ndix A: Workshop Participants	49

Introduction

Meeting the Chemical Industry's Goals for the 21st Century

In 1996, over 200 technical and business leaders from the U.S. chemical industry culminated a series of working meetings with the publication of **Technology Vision 2020: The U.S. Chemical Industry**². The report addresses many factors affecting the chemical industry's competitiveness and the allocation of federal R&D funds devoted to advancing the manufacturing base of the U.S. economy. The **Vision** identifies globalized markets, environmental performance, profitability and productivity, customer expectations, and changing workforce requirements as the "five major forces" confronting the industry as it enters the 21st century. Further, the report describes a chemical industry in the 21st century that will lead the world in technology development, manufacturing, and profitability as well as be responsible for breakthroughs in R&D that improve energy use and environmental stewardship.

The **Vision** calls for the industry to set the standard for the efficient use of energy and raw materials and work in seamless partnerships, creating "virtual" laboratories for developing innovative technologies. The study says that the next millennium will see a chemical industry that promotes sustainable development by investing in technology that protects the environment and stimulates industrial growth while balancing economic needs and financial constraints. <u>Technology Vision 2020: The U.S. Chemical Industry</u> concludes that the synergy of collaboration often has a "multiplier effect" on our nation's pool of talent, equipment, and capital available for R&D and that the chemical industry's growth and competitive advantage "depends upon individual and collaborative efforts of industry, government, and academe to improve the nation's R&D enterprise."

Clearly these far-reaching goals for improved productivity, cost-effectiveness, energy use, and environmental performance will require that the industry address both improved, as well as radically new or alternative ways of making chemical products. Finding the best alternative process will call for the discovery and integration of more than one new technology or the improvement in more than one manufacturing process.

Defining a Role For Alternatives

Every industrial process used to manufacture a chemical product begins with a set of chemical reactions where each reaction is characterized, in part, by the **raw materials** or feedstocks; the **reaction media**, or the substance that allows the raw material molecules to dissolve; and the **reaction conditions** or what

² Available from the American Chemical Society, Washington, D.C., (202) 452-8917.

makes the reaction "go." Groups of reactions toward a product are sometimes referred to as a pathway. An *alternative* synthetic pathway should be more environmentally benign than the pathway currently in use. But the benefits of applying an *alternative* should go beyond improving the environment. An alternative process in industry should also achieve more efficient use of precious resources (e.g., energy, raw materials), reduce the production of unneeded by-products and waste, and improve manufacturing productivity. (See Exhibit 1)

Exhibit 1. Selected Examples of Alternative Media, Conditions and Raw Materials

Media	Conditions	Raw Materials
dense phase supercritical ionic aqueous solventless	microwave electrochemical radio frequency ultrasonic plasma radiation induction photochemical catalysis interfacial/surface mediated	C ₁ molecules from biomass; biomimetic- synthetically derived waste and residues; and atmospheric emissions

Using these criteria researchers in industrial process improvements will follow a number of "paths" on several levels simultaneously. On the first level successful alternatives for source reduction and energy saving results will be obtained by taking a systems approach that combines and as many desirable pathways as possible. On the second level, the inextricable connection between media, conditions, and raw materials will mean that a change in any one of the reaction's components will most likely require some number of supporting or compensatory changes elsewhere in the immediate reaction.

Designing a new synthetic pathway to manufacture chemical products means the researcher must, among a number of other variables, identify and select the best mix of media, conditions, and raw materials. Clearly the challenge of creating energy efficiency, environmental benefits and enhancing the economic viability of the U.S. chemical industry around the world begins with early, up front planning at the molecular level.

Meeting the Challenge

In keeping with **Vision 2020**, the Industrial and Engineering Chemistry Division of ACS and the Green Chemistry Institute sponsored a series of workshops to explore the potential for using alternative synthesis in the chemical process industries. Additional support was provided by the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Electric Power Research Institute. The workshops were attended by participants from industry, government, academia, and the national laboratory complex (a complete list of individual participants is provided in appendix A). Each workshop focused on a separate reaction area:

♦ Alternative Media Workshop, Sante Fe, New Mexico, April 13-16, 1998: alternative reaction media, alternative cleaning and dissolution, and materials modification/pollutant sequestration.

- ◆ The Role of Polymer Research in Green Chemistry and Engineering, Amherst, Massachusetts, at the University of Massachusetts, June 11-12, 1998: modeling and simulation of new polymers, synthesis and catalysis of environmentally benign polymers, benign processing for polymers.
- ♦ Electro technology and Alternative Process Conditions, Houston, Texas, October 19-20, 1998: use of electro technologies and alternative conditions for chemical processing.
- ♦ Synthesis and Processing with Alternative Resources, Denver, Colorado, December 9-11, 1998: science, processing and engineering for chemicals from alternative raw materials.

In each workshop participants discussed industry opportunities, performance targets for the future, key technology barriers and priority research needs. Participants were asked to look ahead as far as 2020, and to generate "out-of-the-box" ideas that could potentially be achieved within this time frame. We have done our best to accurately capture the observations and ideas from these discussions on the following pages.

2 Barriers to Development of Alternative Technology

Exhibit 2-1. Key Barriers to Development and Use of Alternative Cleaning and Dissolution Methods (♦ = Most Critical Barriers)						
Process & Equipment Engineering	Chemical Science & Theory	Institutional Issues	Market/Economic Issues			
Lack of suppliers and manufacturing capacity for this equipment	Lack of material compatibility data with CO₂ and other DPF	Users/customers are widely distributed and technically inexperienced Improper application of technology by end users Overcoming inertia association with existing technology Lack of funding to identify new applications of alternate cleaning methods difficulty in finding seed funding for smaller, niche applications (e.g., contact lens cleaner) Lack of standards and care symbols garment cleaning	Lengthy time to market may result in introduction of less green, or non-green technologies Focus on large users (only 10% of market) may shut out smaller users — tendency to focus on large users Lack of case studies and commercial successes Early demonstration failures that inhibit development Lack of efficient lo-cost distribution networks for dense phase fluids by application — distribution cost is currently fairly high Lack of understanding of green economics (life cycle analysis, etc.)			

Exhibit	2-2. Barriers to using	Alternative Reaction (♦ = Most Critical Barriers)	Media in Chemical S	ynthesis
Innovative Chemistry	Process/ Equipment Engineering	Chemical Science & Theory	Institutional Issues	Market/ Economic Issues
Lack of examples of better new chemistries	Lack of optimization tools A A A Lack of optimization tools A A No means to introduce and remove solids (batch to continuous) No way to reduce the change in pressure barrier for dense phase fluids Unresolved material compatibility issues Lack of under-standing of ARM technology fit Lack of understanding of the scale-up route for equipment No standards for reactor design for dense phase fluids Uncertainty over corrosion behavior in materials of construction of process equipment Reactors that are too expensive and not optimized Lack of off-the-shelf equipment and routine repair infrastructure Limited suppliers of equipment/ lack of demand Inadequate energy management Un-optimized process design Lack of scale-up concepts in reactor engineering for dense phase fluids Media handling problems - chemistry, materials, solids formation, corrosion, economics	Lack of data/predictive models - solubilities, viscosities, density, heat capacity, phase diagrams, toxicology Lack of knowledge of thermophysical properties (i.e., data on phase behavior) Lack of funds for chemical research Lack of knowledge of reactivity and kinetics in dense phase fluids/ARM Limited chemical engineering data Insufficient understanding of function of catalysts Limited understanding of mixing/diffusion/ flow dynamics for ARM processes Lack of knowledge on how medium affects catalyst Insufficient accessible database of information related to ARM Lack of data on feedstocks Lack of screening tools for ionic liquids Lack of mixing and transport knowledge (heat and mass) Poor understanding of physical and chemical behavior of dense phase fluids/ARM	Focus on CO ₂ may diminish interest in other fluids Lack of effective communication: between international industry and among industry/academia, and labs Lack of testing facilities and equipment in industry for dense phase fluids/ARM Lack of detailed strategy for implementation Lack of concurrent, multidisciplinary work Insufficient education supporting application and research of alternative media, phase transfer catalysts, etc. Poor interface between chemical industry and process design in equipment industry Lack of skilled researchers Stringent regulatory climate	High capital cost of alternatives A A Lack of overall system economic assessment (no simple tools available for researchers) A A Poor under-standing of ultimate effect of process change on product Limited reporting of successes and industrial demonstrations Competition vs intellectual property issues Inability to manage risk Inability to measure benefits effectively High maintenance costs Inability to conduct life cycle analysis on new ARM processes Lack of an accepted benchmark High uncertainty regarding costs of implementing dense phase fluids/ARM Benefits not proven to exceed technical risk Lack of information on advantages of ARM (models are inadequate, right tools are not available) Long implementation time

Exhibit	Exhibit 2-2. Barriers to using Alternative Reaction Media in Chemical Synthesis (♦ = Most Critical Barriers)						
Innovative Chemistry	Process/ Equipment Engineering	Chemical Science & Theory	Institutional Issues	Market/ Economic Issues			
	Lack of controls/sensors for new reactors	Lack of knowledge of corrosion in dense phase fluids/ARM Lack of data needed for economic evaluation and scale- up		Unknown economies of scale No common metrics			
		Incomplete understanding of supersaturation - (physical chemistry behavior)					

Exhibit 2-3. Barriers to Material Modification & Pollutant Sequestration Using Alternative Media (♦ = Most Critical Barriers)

Process & Equipment Engineering	Chemical Science & Theory	Institutional Issues	Market/Economic Issues
Lack of standardization and standardized equipment components The standardized equipment compon	Inability to predict thermophysical properties	Lack of model for industrial/government/academic collaboration Amount and stringency of regulations Lack of education financial institutions (investors) consumers students policy/law makers Lack of global view Political barriers Lack of baseline to define precompetitive research	Limited waste and cost information

Exhibit 2-4. Technical Barriers to the Use of Electrotechnologies/ Alternative Conditions in the CPI

(**②** = Top Priority; **●** = High Priority; ○ = Medium Priority)

Process Engineering Chemical Science Scale issues Lack of understanding of electrochemical surface phenomenon - too much entrenchment in large processes - difficulties scaling up solvent-less processes - interfacial conditions - difficulty in scale up due to short penetration depths for transfer catalysis microwave and ultrasound - at solid liquid or liquid/liquid interface rather than bulk Lack of efficient separations for Poor understanding of reactions between electricity, magnetic fields, dilute solutions (hydroquinous bioprocesses) and membranes - electro-synthesis Poor understanding of heterogeneous reactions Difficulties in adapting biological processes Lack of support for developing data for process applications (e.g., physical properties and reaction mechanisms) **QQ**OOO scale issues amount of product has not been applied to bulk chemicals Microwave effects are not fully understood �●○○ - most end-users are not chemical engineers Lack of data in non-aqueous electrochemistry Inability to adapt equipment design for alternative technology (e.g., microwave reactors) Lack of understanding on how to control reactions at the surface of electrodes ••O Lack of durable, robust technologies (i.e., demonstrated to last years with minimal maintenance) Insufficient knowledge of how to apply photochemistry to industrial chemicals OO Difficulty in adapting electrosynthesis to many important applications, especially those with liquid/solid interfaces Lack of multi-unit microbiological process trains to sequence reactions with a series of microorganisms High cost of on-demand sensors/controls (development costs) Insufficient atomic force field database for molecular modeling Lack of understanding of computational mechanistic chemistry for stereochemical reactions Insufficient chemical data to support new technology development Inability to effectively balance modeling and experimentation efforts 0000 Lack of data for life cycle models O Inadequate knowledge of dipolar mixtures OO Insufficient data for analyzing electrosynthesis and comparing with conventional methods (e.g., electrode potentials, energy impacts) Poorly understanding of electrochemical processes (e.g., reaction mechanisms) and inability to control process Inadequate fast computation algorithms for molecular modeling to achieve faster, accurate calculations

Exhibit 2-5. Technical Barriers to the Use of Electro technology/ Alternative Conditions in the CPI

(**②** = Top Priority; **●** = High Priority; ○ = Medium Priority)

(♥ = Top Priority, ♥ = High Priority, ○ = iviedium Priority)						
Specific Technology Issues	Energy and Power Sources	Materials	Catalysis			
Meager engineering understanding of electrochemical cell design	Lack of socially acceptable nuclear power generation → → → ◆ ○ ○ Lack of energy storage technology → → → ● Lack of efficient hydrogen storage medium (compression of H₂ is expensive and dangerous) → ○ Lack of efficient energy delivery systems ◆ Lack of economies of scale in electrical processor equipment ◆ Lack of appropriate materials for fuel cells (membranes, catalysts) ○ ○ Lack of modular, efficient, low-cost residential and commercial solar energy sources ○ Inability to transport energy as a "field" ○ Lack of "on-board" generation of hydrogen from water vapor Electrochemical processes will require more efficient power systems ○ ○ Lack of purification process to avoid poisoning of fuel cells (hydrogen-specific membranes) Lack of inexpensive remote power sources for self sufficiency Lack of breakthrough power source such as real cold fusion Lack of safe, high yield fuel cell technology Lack of highly efficient distributed resources with excellent stability and power quality for site-specific independent power No H₂ delivery infrastructure for fuel cells Perception of hazards associated with H₂ fuel cells Lack of solid fuels (e.g., gels) High cost of new systems for hydrogen	Electrotechnologies are materials-limited Company are not stable Insufficient membrane technology (e.g., solid electrolyte membranes) Omegas-like material with photochemical process capability Lack of predictability in ceramics design and processing (e.g., insulators, vessels) no good net shape process to reduce failure flaws Lack of construction materials (especially electrodes) for production scale-up	Catalysis is not well understood •••• •••• - electro-catalysis is very poorly understood •••• Lack of efficient catalysts for moving electrochemicals to photochemical processes (change to the visible range) •••• Lack of innovative electrocatalytic nano-reaction site design Over-reliance on precious metals for catalysis • Lack of inherently active catalysts that utilize H ₂ O ₂ and/or O ₂			

Exhibit 2-6. Non-Technical Barriers to the Use of Electrotechnologies/ Alternative Conditions in the CPI

(**②** = Top Priority; **●** = High Priority; \bigcirc = Medium Priority)

General Investment/Decision-Making	Marketing and Policies
Lack of knowledge for determining if electro-technology is providing new/better chemistry ❖❖❖❖❖	Too much technology push versus customer pull
Chief executives are driven by money-managers (step change technologies are not popular investments)	Policy and markets do not drive new technology and technology substitutions
Lack of demonstrated successes ����� Already existing capital investment ���●	Technology only advances through capital investment which is implemented only when industry is ready the focus has been on just adding capacity
Lack of "green screen" framework for evaluating and optimizing economic, energy, and environmental options. Framework is needed so science is not conducted in a vacuum (similar to the IPAC equation to evaluate societal economic needs)	Lack of "industrial park" approach to total resource use/reuse/recycling for incremental process plant changes A regulation approach to encouraging "green" processes is unlikely to exceed
Management/industry aversion to risk ❖●●●● Economic, environmental benefits of alternatives, including electrotechnologies, are not available ❖❖❖❖❖	is unlikely to succeed Current paradigm of economic value lacks a long term vision
Risk-reward is not clear/uncertain to management ❖●●	
Unsuccessful past attempts to apply electro-technologies to chemicals and refining ♥●●	
Lack of virtual "consultative" relational database (virtual model) for basic research information to support electrotechnologies in chemical processes (interactive training, expert advice, noncompetitive scope, user friendly interface)	
High capital costs of new processes ●	
Lack of date for comparing efficiency versus "green" impacts for chemical, electrochemical, and biochemical processing O	
Lack of maturity of new technology so decision makers are uncomfortable investing O	
Lack of a neutral demonstration site to explore science, engineering, economic and infrastructure issues	
Lack of understanding of the economies of rebuilding plants with new technology	
Lack of clearinghouse for information on research, potential problems, industry experience with new technology	
Lack of decision-making tools to estimate electrochemical efficiency onsite (e.g., life cycle analysis)	

Exhibit 2-7. Non-Technical Barriers to the Use of Electrotechnologies/ Alternative Conditions in the CPI

(**②** = Top Priority; **●** = High Priority; ○ = Medium Priority)

Education and Institutional Issues	R&D Funding
Lack of basic training/ education in electrochemistry ••••••	Lack of focus on fundamental thinking - changes in the nature of industrial R&D
Inadequate communication with electrochemical equipment suppliers	Insufficient/inconsistent funding for energy research
Inability to get different disciplines (chemical engineers, researchers, chemists, biologists, electrical engineers) to communicate and work together	Roller coaster funding for science is focused on addressing long-term problems O
●●○○○	Decreasing availability of R&D funds
Regulatory environment that makes some development difficult OO	Diversity of chemical industry and disparity in funding for R&D
Control of intellectual property O	Lack of research teams supported to focus on identified problems
Lack of cooperation between industry/government, industry/industry	
Culture shock in moving from conventional processes to electro-process	
Lack of visionaries in the corporate community to advocate new technology	

Exhibit 2-8. Barriers To Polymer Modeling (♦ = Most Critical Problem Areas/Barriers)					
Computing Ability	Human Institutional Factors	Basic Knowledge/ Science	Lack of Data	Clearer Definition	
Getting around molecular size problem - size/accuracy trade off	Attitude towards use and trust of simulations Common understanding of what modeling is inhouse theoretical development platform independent Cost Excellent minds are leaving polymer modeling chemistry (theoretical physics) Missing out on transferring accomplishments from other industries Lack of cross-discipline approach Timing of modeling common understanding Understanding limitations and output of modeling Interface between modeling and marketing departments	Lack of basic science - understanding of	Lack of good physical property data A A A A A A A A A A A A A A A A A A A	Fuzziness of product description What is "green" in 2020	
		Quantitative structure - property relations (structure-based)			

Exhibit 2-9. Barriers To Alternative Polymer Processing/Synthesis (♦ = Most Critical Problem Areas/Barriers)					
Institutional/ Educational	Technology Issues/ Existing/Other New Polymerization	Technology- Other Issues/National Polymers	Basic Science/Predic- tive Capability	Customer Needs Market Demands	Other
Lack of apparent national priority "all talkno \$" (e.g. funding for chemical knowledge	Cost of "green" manufacturing A A A A A A A A A A A A A A A A A A A	Lack of separation processes for bio- mass based processes	Lack of knowledge of biosynthetic pathways Computational chemistry need improvements improved models computational speed the speed The speed The speed The speed The speed The	Definition of key requirements for specific applications Limited need for new materials Lack of customer Genetic pathway manipulation to produce polymers—unders tanding needed demands	Lack of new/creative ideas

Exhibit 2-10. Barriers to Benign Processing and Alternative Reaction Media for Polymers (♦ = Most Critical Problem Areas/Barriers)

Physical/ Chemical Properties	Chemical science Knowledge	Marker/ Economic Issues	Engineering & Equipment	Institutional Issues	Education/ Training
Low mobility in low solvent systems	Few candidates that are "green" reaction media	Lack of incentives outside of regulatory areas for investing resources	Lack of infrastructure for CO ₂ use (and other super critical fluids) - room temperature ionic liquids - nano phase - supported liquid films Inability to fabricate costeffective high pressure equipment Lack of instrumentation for online processing Lack of high vacuum equipment (cost-effective) Green chemistry/products tend to make processes more difficult Don't have continuous processes	Lack of definition of "green" or "environmental benign" ◆ Is holding CO₂ back to efforts to look at other benign materials Lack of management support for research and development − short term profit motive Lack of support for projects that do not meet regulatory needs Lack of a consistent definition of green chemistry Reluctance to change existing processes	Lack of personnel trained with using super critical CO ₂ or other green technologies

	Exhibit 2	2-11. Barriers (♦ = Mos		e Raw Mate lem Areas/Barr		cience	
Properties	Policy & Strategy	Processes & Separation	Bio- Related	Catalysis	Computa- tional	Synthesis	Photo- Chemical (biosyn- thesis)
Lack of understanding of structure and function relationships (mono-mers and polymers) Liquid diffusion coefficients are limiting Thermodynamic problems - CO2 is stable and difficult to activate Lack of detailed phase behavior studies for multicomponent systems Lack of understanding of property relationships along pathways from raw material to final products High oxygen content of alternative material	Abundance and diversity of established petrochemical-based raw materials •• Lack of access to computational modeling for small companies • No long-term government spending on chemical processes • No structures in congress and universities to support longerterm R&D and underwrite R&D risks • Difficulty educating decision makers about the value of chemical research (research is not all done) Lack of industry guidance for directing lab and university R&D – how can industry guide longer term research without compromising proprietary information	Lack of separation and handling technology for processing and extraction from large volumes of biomass and H ₂ O (field to end product in large volume) Absence of low-cost biomass pretreatment processes that: yield fibers reactive to enzymatic hydrolysis do not generate fermentation inhibitors do not degrade carbohydrate s and a lack of related fundamental understandin g Ack of mechanisms to deploy polymers Cost of separation technology for multi products derived from alternative sources Lack of cost-effective co-generation of power/chemicals at specific regional sites	Lack of ability to engineer an entire metabolic pathway A A A A A A A A A A A A A A A A A A A	Lack of catalysts for activating small molecules especially CO ₂ , CO, O ₂ , N ₂ Lack of selective oxygen catalysts using O ₂ or H ₂ O ₂ Consuming lignin synthesis (homogenous catalysts) Lack of understanding of catalysts for the conversion of biomass Lack of understanding of catalysts involved in activating and coupling C ₁ raw material Lack of C-H and C-C bond activation Lack of catalysts to enable processes with fewer persistent	Lack of understanding of mechanistic reactions and ability to model to eliminate trial/error in catalyst design	Cheap H ₂ O ₂ (cheap as C1 ₂) The state of the state o	Lack of ability to gather and use solar radiation efficiently Lack of technology for photogeneration of H ₂ Absence of better catalysts to capture solar energy

Exhibit 2-11. Barriers/Alternative Raw Materials/New Science (◆ = Most Critical Problem Areas/Barriers) Photo-**Policy** Chemical **Processes** Bio-Computa-(biosyn-**Properties** Strategy Separation Related **Catalysis** tional **Synthesis** thesis) Lack of Inability to pollutants logistical couple a thermoinfrastructure dynamically High cost of allowed reaction cellulase Lack of for handling and with a thermoenzymes catalytic transporting dynamically not absence of disinfection alternative allowed reaction microbes that technology produce resources (without making based on O2 salts) cellulase in or H_2O_2 Lack of conjunction farmable land Lack of syngas with products Inability to for dedicated plants that can of interest get around biomass operate on a kinetics with small scale catalytic Lack of mutual Lack of design understanding knowledge of between microbe Lack of high chemists expression thru put biologists on systems methods for problems and catalyst needs Lack of design under-Lack of standing of Lack of logistical stability and understanding infrastructure activity of of surface for recycling biocatalysts science for polymers building Too many coblocks Industry is risk product derived from adverse and schemes (vice alternative short-term versa) raw materials focused - have to sell all of them Lack of Lack of - tunability ability to balance in deliver energy universities on Lack of cost to catalyst site combining effective while fundamental synthesis preserving thinking routes for the selectivity (enough to lead production of to new fuels. Lack of understanding) chemicals or electrowith innovation fuel additives catalysts that (up stream from biomass can harvest invention the majority process) Lack of of energy in microbes that chemicals as are selective. usable robust, electrical productive, energy product tolerant and Absence of cheap electro catalysts for processing complex fuel (store energy as chemical

	Exhibit 2-11. Barriers/Alternative Raw Materials/New Science (♦ = Most Critical Problem Areas/Barriers)							
Properties	Policy & Strategy	Processes & Separation	Bio- Related	Catalysis	Computa- tional	Synthesis	Photo- Chemical (biosyn- thesis)	
				e.g. methanol) Lack of catalysis for H ₂ generation and recovery Difficulty in achieving M-C bond formation				

Exhibit	2-12 Barriers/Alte (♦ = M	ernative Raw Mate		Alternatives
Cost Issues	Social Political Barriers	Feedstocks	Products	Process Technology
High cost of renewable energy High capital intensity High cost of reducing harmful effluents High volume production with unproven technology is risky Cannot economically recover products from dilute aqueous streams High cost of downstream process changes High cost of water recycling/purification	Near term profit mentality	No biomass refining industry Annual crop supply is seasonal Bio-feedstocks are not uniform Infrastructure is not in place for delivery of bio-feedstocks Drying biological feedstocks is inefficient/expensive Crops grown in different parts of the world are different Internal combustion engines used to harvest bio-feedstocks are inefficient	No good targets for transformations	Few catalysts for CO ₂ and C1 conversion A A A A A A A A A A A A A A A A A A A

Ex		rriers/Alternative		ls/Engineering	
Raw Materials Related	Separations	Design, Modeling, Process Control	Reactivity	Products Related	Economics
Molecular structure of biomass - recalcitrance - presence of oxygen - oxygenated - feedstocks preclude fuel development - low energy value due to moisture Stability of the methane molecule Inhomogeneity of feedstocks require separations and cleanups Difficult transportatability and collectability of certain raw materials CO2 concentration methods are too expensive (especially at low purities) Diffusiveness of resources, energy, and materials Inadequate solids and materials handling equipment Knowledge of toxicity of biomass materials is poor Unforseen effects of new processes, particles, and genetically modified organisms Dependence of supply on climate, seasons, and weather changes Mindset of technologies to break molecules down like petrochemical industry Soot formation Future competition for aerable land area	Efficiencies of current product recovery techniques are too low - especially for very dilute solutions - fragility, friability Economic separation of isomers where one is toxic, the other effective Feedstocks are hydrophillic, demanding a new emphasis on aqueous systems POLICY BARRIERS Uncertain tax structure for R&D - no stability - incentive is too low Domestic use preferences on technology supported by government matching funds The broadness of U.S. patent system prevents competition	Difficulty in predictive modeling and simulating biobased processing Feedstock intermediate and product property databases for use in design High percentage of breakthrough technologies are needed Lack of process controls for bioprocessing — inadequate analytical techniques — lack of on-line monitoring — lack of respirometry Need for new manufacturing technology — scale-up issues Design concepts for integrating unit operations — inapplicability of traditional unit operations to biological separations — traditional chemical engineering approach to unit operations in universities Lack of demonstration of scalable systems Consistent systems engineering approach is lacking Dissemination of information about technology and specific properties is difficult	Low thermal efficiency of C1 processes Today's catalysts are inadequate and not bioderived Inefficient bioreactor design Biomass gasifier technology is inadequate Low product yields SOCIETAL BARRIERS Unwillingness to try new technologies Public fear of anything biotech False alarmists and fear of the unknown Local political reluctance to grounds-up plants Aesthetics of new plants	Dominoing quality issues - nobody wants to be first Reluctance to displace existing end product uses Providing pilot-scale samples for application testing Inadequate structural properties - mechanical fragility of most cellulose products Trace oxygenates in many commodity chemical processes Product stewardship - fear of liability for a completely new approach Companies lack creative approaches to considering the function of their products Longevity of structural and coating materials Inadequate hydrogen storage methods - weight is too high - pressure is too high	Industry is too focused on short-term profits - pressure for short return on R&D Reluctance to replace existing manufacturing infrastructure Energy cost for C1 processes is too high Large plant construction time and logistics Cost structure of existing chemical industry Difficulty in forming multicompany alliances to solve problems Concerns for need for simultaneous development of related technologies Economic models that incorporate soft issues are lacking Adaptation of superior supply chain management to this industry does not occur

3 Research Needs for Alterative Technology

E	Exhibit 3-1. R&D Needs: Alternative Cleaning and Dissolution Methods (♥ = Top Priority; ● = High Priority; ○ = Medium Priority)							
Time Frame	Chemical science Science	Process/Equipment Engineering	Modeling/ Stimulation	Research Support				
NEAR (0-3 Years)	Identify and develop additional modifiers for dense phase fluids to enhance functionality →	Development and testing of dense phase fluid components capable of handling material and debris - pumps - compressors - valves - heat exchangers Conduct materials testing program for compatibility	Develop process economic models to compare existing or emerging technology	Encourage professional societies and other organizations to promote manufacturing of components Examine and research end user needs				

E	Exhibit 3-1. R&D Needs: Alternative Cleaning and Dissolution Methods (♠ = Top Priority; ♠ = High Priority; ○ = Medium Priority)							
Time Frame	Chemical science Science	Process/Equipment Engineering	Modeling/ Stimulation	Research Support				
MID (3 -10 Years)		Improve optimization of process parameters	Develop better equations of state models for complex, DPF systems	Institute national training program for servicing curricula ◆○ - vocational technical training curricula Develop application - specific protocols for cleanliness targets				
LONG (>10 Years)				Conduct research on alternative product design for cleaning (design for cleaning)				
ONGOING	Study the kinetics and thermodynamics of mass transport processes	Develop alternative (commercial) materials for pressure vessels — composites — ceramics — improved steel alloys	Develop DPF process simulation capability — more generic widely available models	Conduct health, safety and risk research for DPF				

E	Exhibit 3-2. R&D Needs: Alternative Reaction Media in Chemical Synthesis (♣ = Top Priority; ♠ = High Priority; ○ = Medium Priority)							
Time Frame	Chemical Science	Exploratory R&D	Process/Equip- ment Engineering	Modeling/ Simulation	Research Support			
NEAR (0-3 Years)	Develop combinatorial lib/screens for ionic liquids	Demonstrate differentiated examples of key chemistry - e.g. reduction-oxidation - base or acid catalyzed - selectivity change - improved yield enabling technology Explore modification of materials with alternating media-morphology changes - Conduct systematic screening of chemistries and fluid systems - O Investigate activation of CO ₂ for generation of polyesters and poly-carbonates - O Investigate thermally stable phase transfer catalysts - Explore commodity chemicals property modification in dense phase fluids - Investigate recovery and products from ionic liquids - C - Explore the possibility of raising the viscosity of CO ₂ by 1-3 orders of magnitude - C - Explore the use of light or chemical triggers to recover dissolved products from dense phase fluids/ILs			Identify industrial needs SOME STATE STAT			
MID (3-10 Years)	Collect and publish needed thermokinetic data Iiterature experimental data base	Explore economics and liability of reactions in H ₂ 0 at a large scale (non-emulsions)	Develop scale-up for specific applications (reactions) - 1-10 Kg Develop new equipment designs (lower cost)	Develop engineering cost models for supercritical fluid equipment Evaluate various modeling programs for potential	Identify advantages of ARM, provide comparison with known systems, and quantify evaluations ◆●○○ Define metric that will give a value to the "green"			

Ex	Exhibit 3-2. R&D Needs: Alternative Reaction Media in Chemical Synthesis (♣ = Top Priority; ♠ = High Priority; ○ = Medium Priority)							
Time Frame	Chemical Science	Exploratory R&D	Process/Equip- ment Engineering	Modeling/ Simulation	Research Support			
	Develop experimental designs to provide data needed for modeling Define categories of reactions in new media (rates, selectivities) Develop thermodynamic property data on alternative media		Develop innovative reactor designs or materials to reduce capital cost	application to dense phase fluid/ARM systems O Study application of corrosion models in A.R.M. Develop thermodynamic model for ionic liquids to narrow potential structures for a given application Develop software tools to differentiate "green" and economic advantages Develop simple lab tools for trying dense phase fluid/ARM systems Model phase behavior of dense phase fluids in complex compositions	attributes of dense phase fluid technologies			
LONG (>10Years)	Conduct studies of interfacial science Surface Design Nucleation Stability of colloids Interfacial tension Emulsions Fibers Composites Thin films (coatings) Coatings) Study behavior of biomass (liquid, carbohydrates, etc) in ionic solvents at different temperatures and	Explore chemistry at interfaces and in multi-phase system Study material property as a function of method of synthesis, including properties of foams Study impact of fluid properties on catalysis COC Explore chemical interaction of supercritical CO ₂ and/or CO ₂ /co-solvent system with different feed materials		Develop predictive techniques and supporting data for separations Develop integrated plasma-surface-catalysis models				

Ex	Exhibit 3-2. R&D Needs: Alternative Reaction Media in Chemical Synthesis (♣ = Top Priority; ♠ = High Priority; ○ = Medium Priority)						
Time Frame	Chemical Science	Exploratory R&D	Process/Equip- ment Engineering	Modeling/ Simulation	Research Support		
	pressures in the presence of reagents	Develop catalysts for phase separation (include solubility of catalyst)					
	Investigate what makes a compound very CO ₂ soluble at the molecular level Increase knowledge of transport properties Study phase transport phenomena	Explore materials compatibility issues C Explore heterogeneous polymerization — control morphology — stabilizers — composites					
ONGOING	Gather physical/chemical data for additional reaction systems Search for undiscovered environmentally benign alternative media	Conduct exploratory research on alternatives to dense phase fluids (e.g. water, ionic media, fluorocarbons with different solubilities) Explore recovery, recyclization and reuse	Develop sensors and process controls O		Disseminate information on successful laboratory applications (applied R&D) Translate laboratory curiosities and connect with industrial needs Compile data on successful applications of dense phase fluids/ARM Develop assessment schemes through inter-society initiatives Study environmental consequences of ARM		

Exhibit 3-3. R&D Needs: Alternative Material Modification/ Pollutant Sequestration (**②** = Top Priority; **③** = High Priority; ○ = Medium Priority)

Time	Chamical Science	Process/Equipment	Modeling/Simulation
Frame	Chemical Science	Engineering	Modeling/Simulation
NEAR (0-3 Years)	Optimize processes	Explore materials compatibility • O O - equipment materials - materials being processed - evaluate materials with respect to the process and vice versa Address large area reactions • O O - evaluate existing available methods - develop new methods Develop closures O - identify better materials of construction - develop rapid (10-60) closures	Develop a process optimization model
MID (3-10 Years)		Develop separator technology OOOO - increase selectivity, recovery, energy efficiency, speed Design/optimize pumping and compressing equipment OOO - inexpensive pumps, faster compression/decompression	
ONGOING		Develop continuous processing	Conduct studies in computational modeling

Exhibit 3	Exhibit 3-4. R&D Needs to Overcome Key Barriers: Electrotechnology & Alternative Conditions						
Time Frame	Lack of Efficient Separations for Dilute Solutions	Lack of Socially Acceptable Nuclear Energy	Lack of Energy Storage Technology	Lack of Efficient Catalysts for Moving an Electrochemical to a Photochemical Process	Lack of Understanding of Electrochemical Surface Phenomenon for Scale-up		
NEAR (0-3 Years)		Educate environmentalist so they can lead Develop appropriate "green screen" Perform behavior research Design breeder reactor that is standardized and demonstrated - Rethink thorium cycle Develop uniform nuclear power design for national standardization Develop better radiation construction material Develop good scalable corrosion models (thousands of years) Develop plan for decommission ing plants		Explore high quantum efficiency for light capture and efficient charge separation processes Locate controllable low-pressure, partial oxidation catalyst with selectivity Locate additional photo catalysts	Investigate effects of impurities on electrochemical material properties Investigate properties that limit efficiency increases in scale-up		
(3-10 Years)	Identify growth factors for optimization Develop more efficient distillation Develop better model biosystems for process design, prediction, and control Develop selective membranes for complex materials Understand	Explore beneficial uses of tritium Develop better containment for intrinsic safety disposal Demonstrate "modular" gas cooled reactor that is inherently safe and cannot go critical (no water container)	Develop synergistic process to use cold from LNG Develop light weight hydrogen storage Develop high pressure hydrogen storage in fail safe mode Develop an inexpensive hydrogen detector Explore the use of	Mimic enzymes to design reliable and efficient catalysts Develop basic data on the role of acceptors (efficiency and selectivity) Locate a catalyst that uses electricity for redox reactions (FE ₃ -FE ₅) Determine if microwave effects on catalysts are due to thermal effects or something else Study degradation,	Improve membrane and electrode life Explore miniaturization of cell gap width Investigate energy management system design (e.g., smart battery) Develop innovative designs for structural integration (battery part of structure) Design alternative electrode configurations and geometry		

Exhibit 3-4. R&D Needs to Overcome Key Barriers: Electrotechnology & Alternative **Conditions** Lack of Efficient Lack of Lack of Lack of Catalysts for **Understanding of** Electrochemical **Efficient** Socially Lack of Moving an Separations Acceptable **Energy Electrochemical to Surface Time** for Dilute Nuclear a Photochemical Phenomenon for Storage **Frame Solutions Energy Technology Process** Scale-up separations transport storage regeneration mechanisms design and manufacture of for catalysts electrochemical cell Determine how to Develop an combine efficient, cost-Investigate metal doping technology with effective auto to create a hot spot -develop ability to cause biotechnology battery effectively (e.g., reactions at defined use microbes to Investigate reaction sites on the decompose hydrogen fuel cell surface difficult combinations chemicals) Demonstrate nanoscale Develop safe fly construction and design wheels for large surface area heterogenous catalyst Develop efficient Develop a nano-Develop efficient ways to Develop an Demonstrate scale-up of size nuclear power efficient naturaluse photosynthesis in solid state batteries active transport mechanisms source for pointgas-to-solid near opaque conditions across membranes of-use and multiprocess to avoid Develop better high use applications Use surface science to temperature batteries (new that are as pressure for easier efficient as define and understand materials) transport biological systems Investigate spent catalysts fuel handling so it Explore the use of Avoid phase takes up less magnetic fields or Investigate space and is safer capacitors (i.e., change in photosynthetic separation electric field) for semiconductor coupling Resurrect spent synergistic use as for energy-direct plugs fuel reprocessing a power source Utilize existing Develop energy Encourage bybiosystems and connect product reuse storage capability to manmade systems similar to the (bio/synthetic symbiosis) compact 3-d folding of protein Rapid screening techniques for evaluating for use as a high "green" reactions energy compound (combinatorial Develop chemistry) economically attractive process for remote naturalgas-tohydrocarbon liquids Investigate direct one-step oxidation of methane to methanol (not syngas)

Exhibit	Exhibit 3-4. R&D Needs to Overcome Key Barriers: Electrotechnology & Alternative Conditions							
Time Frame	Lack of Efficient Separations for Dilute Solutions	Lack of Socially Acceptable Nuclear Energy	Lack of Energy Storage Technology	Lack of Efficient Catalysts for Moving an Electrochemical to a Photochemical Process	Lack of Understanding of Electrochemical Surface Phenomenon for Scale-up			
ONGOING	Determine how to clean up waste streams in non-traditional ways or avoid them Conduct research on separation of organic compounds (acids) from dilute solutions	Promote sustainable power plants Continue fusion research Maintain science and engineering expertise Educate the public		Improve computation tools for rational catalyst design Replace platinum find more base metal catalysts	Improve regeneration of batteries			

Exh	Exhibit 3-5: R&D Needs to Overcome Key Barriers: Electrotechnology & Alternative Conditions				
Time Frame	Controlling Interfacial Reactions at the Surface (Phase Transfer Catalysis)	Chemical Science/ Modeling/Simulation	Process Design		
NEAR (0-3 Years)			Determine energy requirements for microwave assisted reactions		
MID (3-10 Years)	Investigate further: ozonation reactions at the liquid layer (e.g. reaction constants) Look at reactions that can be done with ozone – splitting double bonds – safer, greener reactions Explore ways to control ozone reactions Explore new reaction media for electrosynthesis		Investigate continuous processing methods using electrotechnology Conduct 2 nd phase R&D, including customers, equipment manufacturing, and scientists		
LONG (>10 Years)	Fully investigate non-conventional reaction conditions — new approaches to rapid screening — ability to model on-line — control mechanisms — micro-gravity reactions		Find ways to resolve the problem of liquid diffusion coefficients (10 ⁻⁵) - resolve transport issues - overcome diffusion control problems		
ONGOING	Understand interaction between electro/magnetic fields and interfaces – particularly between fluids and solids Better understand advanced electro-based techniques: – are they more selective? – are they more efficient? – example: what are the effects of lasers on reactions? Develop electrolyte systems with out purification problems	Concerted effort at molecular modeling to design processes, especially "green" processes - Design molecules - Reduce the number of experiments to evaluate "green" technology - Develop accurate, predictive capability for large molecules that links results to "green" processes and links results to economic parameters (i.e., economic model) - Environmental "flags" for toxicity to calculate byproducts and yield	Examine/develop dielectric constants of mixtures, – examine physical properties		

	Exhibit 3-6. R&D Needs to Overcome Key Barriers: Electrotechnology & Alternative Conditions				
Time Frame	Meager Under- standing of Electro-Reactor Design	Poor Understanding of Electro- catalysts	Materials Limitations	Insufficient Systems Design	Scale-up Issues
NEAR (0-3 Years)		Establish multi- disciplinary groups to couple electrochemistry to other analytical techniques Create an organization for the exchange of ideas on electrocatalysis	Conduct efforts in materials development and characterization Develop an inexpensive porous electrode	Design systems for remote sensing - measuring voltage, temperature, electric potential	
MID (3-10 Years)	Explore ways to obtain a good surface to volume ratio	Explore better techniques for catalyst characterization under realistic conditions Apply combinatorial techniques to electro- catalysis Develop new analytical tools that take advantage of micro devices (lab on a chip)	Create self-repairing membranes Develop more stable anodes Explore and develop materials that can be tailored through molecular imprinting	Devise in-situ measurement techniques Design and develop holistic sensing methods — micro-reactors in parallel for sensing	Develop adequate process models — requires adequate process/prope rty data Create novel designs for reactor that are scalable Seek to take more advantage of economies of scale
LONG (>10 Years)		Establish strategies for providing appropriate technical assistance on new plant construction Seek alternatives to precious metals in catalysis and other applications	Develop materials with unique properties (i.e. conductivity, resistivity) - higher conductivity electrodes	Develop techniques for coupling of unit operations	
ONGOING	Optimize reactors with respect to forces driving the reaction Devise means for more uniform delivery of energy Facilitate reproducibility of reactions Maximize productivity	Explore new catalyst designs	Reduce cost of materials while maintaining performance Increase membrane life, lower membrane mechanical damage		Seek reduction to practice (prototype)

	Exhibit 3-7. Research Needs: Polymer Modeling (♥ = Top Priority; ● = High Priority; ○ = Medium Priority)					
Time Frame	Data	(What Is Green?) Problem Definition Needs For Data	Model Development Needs	Characterization/ Measurement Tools	Institutional Education	
NEAR (0-3 Years)		Compile description of current modeling capabilities O Define priority green chemistry problems O Data on highest use polymers Data on highest emissions and release products Data on highest waste general products Focus on growth industries Define requirements of models for wear ability and durability Define what is recycling/ consequences for polymer properties Define "benign" as parameters for models Define modeling needs for batch processes	Life-cycle cost/benefit models Finer-grained CFD approach to capture properties Models for alternative reaction media and condition Develop solvent-free processing methods/simulate Models of different release of additives from polymer Algorithms for organizing large data sets "data mining"	Atomic basis sets for metals	Industry/end-user appreciation of utility of modeling ◆◆◆◆◆●	
NEAR-MID			Methods for "many degree of freedom problems"	Accelerated test methods for toxicity and durability		

	Ex		search Needs: P • ● = High Priority; ○	Polymer Modeling = Medium Priority)	
Time Frame	Data	(What Is Green?) Problem Definition Needs For Data	Model Development Needs	Characterization/ Measurement Tools	Institutional Education
MID (3-10 Years)	Control samples for characterization data Collect data on VLE		Need a group contribution model for solvents ••• C Develop force fields from electronic structure C Handling com-plexity and diversity of entire system of reactions	Way to track processing history of a material	
LONG (>10 Years)	Micro structural properties data and defect, fracture property data		Formulation models for additives (interactions) Build wear ability and durability models photo degradation diffusive release	Methods to measure additional micro structural properties Ability to measure physical and mechanical properties in line	
ONGOING	Data on reactivity and catalyst performance Data and relationships for interaction with additives Colorants fillers dyes flame retardants molecular structure features of each Develop benchmarking data	Prioritized targets for property data ◆ environmental insults	Predictive models for reaction pathways degradation pathways synthesis include intermediates Develop integrated models at multiple scales Development of hybrid models Analytical modeling Value of information models (sensitivity/uncertain		Get industry comfortable with approximations Money - commitment to theoretical modeling in industry - commitment to more basic research

	Exhibit 3-7. Research Needs: Polymer Modeling (♣ = Top Priority; ♠ = High Priority; ○ = Medium Priority)				
Time Frame	Data	(What Is Green?) Problem Definition Needs For Data	Model Development Needs	Characterization/ Measurement Tools	Institutional Education
			Validation of appropriate ranges of applicability of models (fluid behavior)		
			Predict macro properties from molecule properties		
			Need ability to predict microscopic properties from molecular structure		
			Better understanding of rheological behavior and appropriate technology to model performance		

Exhibit 3-8. Research Needs: Improved/Benign Polymer Processing/Synthesis (� = Top Priority; ● = High Priority; ○ = Medium Priority)

(,, ,, ,, ,, ,, ,					
Time Frame	Basic Science	Process Engineering Needs	Catalysis	Applications	Institutional/ Education
NEAR (0-3 Years)	Study of natural polymer properties relative to structure	Develop needs in plant transformation to speed up R&D/production	Review catalyst use in polymers assess environmental impact solve if necessary Database of catalyst utilization in polymerization environmental impact	Immobilized enzymes for polymerization Polymer use in soil protection erosion limits/ water infiltration Polysaccharide new applications evaluation versus synthetic polymers	Consortium of industry/ academia/ government to fund area OOOO Inter-disciplinarian approach (team) to solve bio-polymers need/problems. (funding) OOOOOOOOOOOOOOOOOOOOOOOO - flexible platforms for teams - exchange of people
NEAR - MID	Research on natural polymer modification structure/property Reliable characterization of smaller quantity of material processing applications	Improve method of life-cycle analysis of new versus existing 0-5 years	Deceased combinatorial chemistry techniques applied to catalysts enzymes Combinatorial methods for catalyst development	Green-very selective solvents Replace heavy medallions in coatings with natural based biocides (also catalysts?)	Synthetic catalytic chemistry disciplines improved cooperation
(3-10 Years)	Better understanding of structural requirements for biodegradability Controlled phase transition	New separation purification technology needed for bio-mass	Flexibility of natural catalysts to conduct unnatural reactions	Natural polymers for coatings/adhesives surface properties Expand knowledge of applications for suspension/enulvar polymerization Design of polymeric based insecticides/ pesticides lowered environmental impact	

Exhibit 3-8. Research Needs: Improved/Benign Polymer Processing/Synthesis (� = Top Priority; ● = High Priority; ○ = Medium Priority)

Time		Process Engineering	giri Hority, © = Wickin		Institutional/
SNO J-Q	Basic Science Understanding of polymer metrics can be better designed for cell growth/differentia	Needs	Catalysis	Applications Development of stimuli-responsive polymers "smart materials"	Education
LONG (>10 Years)	Research into light driven polymerization OOOOO Improved toxicity testing/study natural polymers Use of high thorough put screening for the nonrational design of polymers Study Human sensitivity (allergy) to bio-derived polymers Study host-quest interactions database of structure/property relationships for proteins	Genetically enhanced plants to produce final product – no conversion necessary Replace heavy metal ions with low Mw lower toxicity systems in polymeric systems	Catalysts to polymerize lower purity monomers (eliminate separation process) Develop catalysts for C1 chemistry More robust (green) biocatalytic methods for convenience of complex biomass streams Natural catalysts for non-classical applications biopatterning		
ONGOING	Metabolic engineering to control structure and features New polymer synthesis from natural (biv) product denied monomers Fundamental processes controlling self-assembly Search for new biopolymers in the environment Study/understand genome	Design criteria for production of biobased technology products	Better mechanistic understanding of enzymatic catalysis for polymer production Control of 3-D chemistry needs improved capabilities/green processes stereospeir Techniques for measurement of surface properties catalyst/biopolymers etc.	Look for natural polymers to solve emerging application LC, NLO, photo sensitive etc. Develop improved/new "green" concepts for additives Better understanding of market/application property profile needs	Integration of genetic engineering capabilities with polymer needs 0-20 years Initiate funding educational issues in polymer ecology Polymer scientists should now have biological science training Definitive results/proof of global warning problem will drive future programs

Exhibit 3-8. Research Needs: Improved/Benign Polymer Processing/Synthesis (� = Top Priority; ● = High Priority; ○ = Medium Priority)

Time Frame	Basic Science	Process Engineering Needs	Catalysis	Applications	Institutional/ Education
	Computational modeling of natural polymers predict properties Assembly - disassembly of biological macromolecules O Metabolic pathway kinetic modeling		Redesign of existing enzymes for new polymer applications	Environmental toxins - study impact of polymer additives Natural/synthetic polymer compatibilization also natural/natural	

			eaction Media Polymeriza	tion
Time Frame	Needs Assessments	Process Design/ Development	Material Design	Basic Science/ Chemistry of Reactions
NEAR (0-3 Years)	Develop industry list of highest polluting reactions (top ten) Analysis of EPA ranking criteria for "green" Need sources of emissions categorized by polymer groups	Process monitoring and process control Need to use extruders as reactors Need to recover rejected parts painted/coated parts Use polymers to sequester "undesirable" materials Need a means for rapid process scale-up pilot-plant accessibility Better classification of waste streams Study effect of solid-state orientation Need to induce crystallization/ nucleation	Develop and improve solvent-free coatings and films New compatibilization agents Need thermosets that are stable at room temperature and don't require high temperatures for curing Development of multicomponent solvent-free coatings Need nano-composites for improved properties Dendritic polymers to reduce viscosity colorants processing aides Develop electrically conductive polymers for solvent less coating	Need to know properties of polymer mixtures at high temperatures and pressures Need supercritical fluid properties of non-hazardous materials Define solvent properties for polymers and compare to VOC data Need rheological studies for polymers at critical conditions Need classification of reaction media in terms of solubility properties Need to know what kind of chemistry can be done: i.e. at a supercritical CO ₂ /solid interface
MID (3-10 Years)		Need low-emission, high-mobility, continuous processing CO₂ and related as an example Processing methods, for bio-based materials CO₂ and related as an example	Need reversible plasticizers – that can be thermally or photolitically decomposed	Use combinatorial methods for A.R.M. (Or catalysts) "Green" separations
LONG (>10 Years)				Need catalysts for C_1 feed stocks \bullet \bullet Learn how to chemically activate CO_2

	Exhibit 3-9. Research Needs: Alternative Reaction Media Polymerization (♠ = Top Priority; ♠ = High Priority; ○ = Medium Priority)					
Time Frame	Needs Assessments	Process Design/ Development	Material Design	Basic Science/ Chemistry of Reactions		
ONGOING	Develop libraries of polymer processing needs and green (A.R.M.) Alternative Reaction Media - toxicity data - physical properties Need to measure the cost-benefit relation of "green"	Need programs for developing solvent-less processes Development of processing methods to alter polymer properties Need to improve recycling processes Differentiated examples of A.R.M. also measure economics		Study of chemistry in A.R.M. OOOO Need a complete characterization of A.R.M. OOO Research on property relationships OOO Need better measurement techniques OOOOO Study types of processes that can be used with A.R.M.		

Exhi	bit 3-10 Research Need: (♥ = Top Priority; ●	s/Alternative Raw Mater = High Priority; () = Medium P	
Time Frame	Biomass	C1 (emphasis on CO ₂) & Small Molecules	Enabling Science
NEAR (0-3 Years)	Identify properties of biomass products and compare to properties of current commercial products ■ Conduct research and technology science to ensure that products can be isolated on a large scale from biomass and or H₂O	Develop catalytic processes, including catalyst and reactor design for chemical synthesis from C1 molecules	Develop high thru-put methods for catalyst synthesis and testing Output Develop computational capability for mechanistic reactions
(3-10 Years)	Molecular catalysts for biomass processing e.g. High temperature homogenous hydrolysis catalysts for selective degradation of cellulose; and develop new nonsalt generating selective catalytic chemistry for conversion of biologically derived material especially oxidation reduction chemistry The following the ficiency of biocatalysts useful in processing biomass and down stream products Increase the efficiency of biocatalysts useful in processing biomass and down stream products increase the carbon efficiency of bio-processes Comparison of the ficiency of bio-processes to useful chemicals without extensive chemical processes. Develop consolidated bio-processing for onestep biological conversion of pretreated cellulosic biomass to useful products without exogenous cellulase or other catalysts Comparison of the cata	Develop high activity catalyst for selective CO₂ co-polymerization Pursue understanding of M-C bond formation from CO₂ Develop capability to use formate esters and other CO₂ derived molecules as fundamental building block Develop cost-effective synthesis of dimethyl carbonate from CO₂ and demonstrate as fuel or fuel additive OOO	Develop catalystic methods for the usage of H ₂ O ₂ Develop high-performance metal catalyst for biphasic processes Develop methods of O ₂ control for delivery and removal to reactors Explore and understand depolymerization mechanisms OOOOO

Exhibit 3-10 Research Needs/Alternative Raw Materials/New Science (� = Top Priority; ● = High Priority; ○ = Medium Priority)				
Time Frame	Biomass	C1 (emphasis on CO ₂) & Small Molecules	Enabling Science	
LONG (>10 Years)	Develop manipulation of metabolic pathways to design and add value to plants/biomass used for chemical feedstocks ◆●●○○○ Develop cost-effective processes for the conversion of biomass to useful lower molecular weight chemical feedstocks Determine how cellulase can be modified to avoid product inhibition	Develop generational recovery of H_2 from H_2S \bigcirc Develop catalysts for reactions of CO_2 and H_2 to form non-cyclic oligomer of CHO	Develop catalysts for efficient photo decomposition of H_2O into H_2 , and photochemical CO_2 fixation OOO Develop catalysts for the efficient conversion of solar to chemical energy (non-nuclear) $OOOO$ Develop selective catalystic oxidation of organic matter using $OOOOO$	
ONGOING	Explore selective transformation and functionalization of carbohydrates Develop economical pathways to produce aromatic hydrocarbons from biomass Overcome recalcitrance of cellulosic biomass via new highimpact approaches relevant to: pretreatment and enzymatic hydrolysis gasification catalysis acid hydrolysis	Develop processes to synthesize polymers derived from CO ₂ with properties similar to petroleum - derived analogs	Develop new computational and experimental tools to speed catalyst design and testing	

Exhibit 3-11. Research Needs/Alternative Raw Materials/Processing Alternatives (♣ = Top Priority; ♠ = High Priority; ○ = Medium Priority)

	Genetics		
	Separation & Processes		Explore novel membranes that are more efficient for separating products from waste
//	Catalysts	Apply combinatoria 1 chemistry for screening chemical catalysts	
	Bio-Refining	Define what a bio-processing or CO ₂ capture plant will look like	
- i iigii i iiciity, & - iiicaiaiii i iiciity,	Systems Analysis/ Modeling	Look at overall cost, energy of using alternate feedstocks O Develop realtime, on-line models to react to a process	Perform computer modeling of catalyst poisoning Develop cost models for a flexible feedstock plant Find uses for the inorganic component of biofeedstocks
ا – اعلاد العلاد (🕶 – ا	Polymers	Use cellulosic or polysaccharide materials as a feedstock ♣●○	
do: _ •)	Policy/Funding	Create a policy initiative to address technology needs	
	CO ₂ Utilization	Establish integrated program for CO ₂ utilization Communication Communication users, plant growers, sequestration users - framework to develop balance - better communication Create more efficient ways of CO ₂ transfer (pipelines etc)	
	Time Frame	NEAR (0-3 Years)	UIM-AAƏN

Exhibit 3-11. Research Needs/Alternative Raw Materials/Processing Alternatives (♠ = Top Priority ♠ = High Priority: ○ = Medium Priority)

	Genetics	Develop safe gene cloning systems for various processes
	Separation & Processes	
riority)	Catalysts	Develop catalysts for selective transformation of sugars SCONO Develop sulfur tolerant catalysts Explore means for selective C-C bond cleavage Convert sugars to formalde-hyde, ethylene glycol brak down polymers Create a larger pool of enzymes that can be used for specific purposes Create more efficient ways for understanding enzyme reactions
= High Priority; ○ = Medium Priority)	Bio-Refining	Find cheaper ways to separate cellulose from biomass Combine chemistry for biomass refining process and make links with existing chemical intermediates chemical intermediates Cower capital cost of process from starch or cellulose to derivatives Lower capital cost of processes from starch or cellulose to derivatives Lower capital cost of processes from trees to cellulose
= High Priority;	Systems Analysis/ Modeling	Include total cost accounting in life cycle inventory analysis analysis analysis analysis analysis eata libraries must be established
(② = Top Priority; ●	Polymers	Use other polysaccharides as derivatives for materials
3	Policy/Funding	
	CO ₂ Utilization	
	Time Frame	MID (3-10 Years)

Exhibit 3-11. Research Needs/Alternative Raw Materials/Processing Alternatives

_
₽
Priori
.≝
ᡅ
Medium P
2
Ш
\bigcirc
٠.
= High Priority; (
.≌
ᡅ
붓
ē
<u></u>
II
(Top Priority;
.≌
щ
9
\vdash
II
Ä
હ

	Genetics	Rapid genetic modifiable organism (GMO) development	
	Separation & Processes	Recover CO ₂ from the atmosphere	Recover methane from gas hydrates
(d)	Catalysts	Catalysts that will form C-C, C-N, C-? bond, to CO ₂ Develop catalysts for C, feedstock, Coco - photo - catalysts - thermal catalysts - electro catalysts - electro catalysts Cators or other methods to generate enzymes OO Eliminate or reduce product inhibition of biocatalysts	
, (S., S.,	Bio-Refining		Integrate genetic engineering of trees and other feedstocks with process chemistry
	Systems Analysis/ Modeling	Develop scalable models to go from molecular level to bulk to life-cycle (holistic modeling)	
, (cc., do.,	Polymers	Pursue new chemistry to create a wider variety of CO ₂ - based polymers ● ○	
	Policy/ Funding		
	CO ₂ Utilization		Devise ways to produce cheap hydrogen
	Time Frame	WID-LONG	LONG (>10 Years)

Exhibit 3-11. Research Needs/Alternative Raw Materials/Processing Alternatives (♣ = Top Priority; ♠ = High Priority; ○ = Medium Priority)

	Genetics	Pursue a better understandin g of metabolic pathways Conduct research to understand gene sequence, & enzyme function to produce chemicals
	Separation & Processes	Lower cost of enzyme purification O Investigate onestep processes instead of multistep (e.g. H ₂ separation)
ority)	Catalysts	Conduct research to understand biocatalysis Combine biocatalyst with chemical catalyst with chemical catalyst reactions Combine biocatalyst with chemical
) = Medium Pric	Bio-Refining	
(② = Top Priority; ③ = High Priority; ○ = Medium Priority)	Systems Analysis/ Modeling	Conduct research to determine where capital is best used for alternate processing Pursue chemical and utilities industry integration COCONTROL CONTROL CONSIGER THE SMALLER CONSIGER THE SMALLER CONSIGER THE SMALLER CONSIGER THE SMALLER A CONSIGER THE SMALLER CONSIGER
Top Priority;	Polymers	Support applications development for lignin based products
9	Policy/Funding	Promote spending for research Consider health and safety issues of alternative processing Establish mechanisms for greater interaction between government, industry, academia
	CO ₂ Utilization	Develop better solar energy conversion technology
	Time Frame	ONCOINC

Exhibit 3-12. Research Needs/Alternative Raw Materials/Engineering Top Priority, High Priority, Mid Priority

CATEGORY	BARRIER:	NEAR (0-3 yrs.)	MID (3-10 yrs.)	LONG (>10 yrs.)
Raw Materials Related	Molecular structure of biomass	Develop database for molecular modeling Acid hydrolysis	Genetic and chemical alteration of molecular structure Physical process - ulrasound - microwave - radiation	
			Develop new separations process from the heteroatoms and metals Identify routes from existing structures to products - platform chemical	roducts
	Stability of the methane molecule		Stabilize the last precursor to methane - understand methane formation mechanism	Efficient, directed activation of CH ₄ Improve short contact time conversion
			Low temperature combination of form and water gas shift	processes
			Biological routes to combine CH_4 and CO_2	Economically apply solar/thermal energy to high-temperature reators
			Develop novel reactor designs that permit elevated temperature reaction.	
	Inhomogeneity of feedstocks require separations and	Improve front-end mechanical systems	Improve drier processing techniques	
	clean-ups	Explore sp	Explore spectrum of feedstocks (some may hold competitive advantage)	petitive advantage)
Processing Related: Separations	Efficiencies of current product recovery techniques is too low	Develop new and more efficient Absorption techniques Separation of toxic and non-toxic isomers or enantiomers	Develop highly selective membranes Develop new methods of reversibly altering products - e.g. laser activation, bioactivation	Robust separations for very dilute solutions of fragile molecules in processing of bulk solids
		Reactive separation - reactive distillation - membrane reactor		
		qíH	Hybrid separation techniques combining a biological step	iological step
			Apply "pinch" like techniques to purity	ty

Exhibit 3-13. Research Needs/Alternative Raw Materials/Engineering Top Priority, High Priority, Mid Priority

CATEGORY	BARRIER:	NEAR (0-3 yrs.)	MID (3-10 yrs.)	LONG (>10 yrs.)
Processing Related: Reactivity	Low thermal efficiency of C1 processes	Identify new alternative reaction media (e.g., supercritical CO_2) Develop improved or novel bioreactors	Laser activation	Develop low-temperature C1 conversion processes Develop bioreactors in which the organism is the reactor and separator
	Today's catalysts are inadequate and not bio-derived	Catalysts search efforts based on computational or combinatorial techniques -biocatalyst search New cataly	atorial catalysts New catalyst formulations designed for renewables processing systems	processing systems
Processing Related:	Lack of process controls	Improved data analysis (e.g., fuzzy logic) Research on-line monitoring		
Models, Process Control	Difficulty in predictive modeling techniques		Central database and modeling program that is generally available Develop property database for feedstocks	ocks
	General design issues	More reliable float control measurement of two-phase	Develop advanced materials of construction	tion
Product Related	Dominoing quality issues	Explore industry consortia for demonstrations Develop more relevant product specifications		
		Develop 1	Develop better analysis techniques for quality along the entire process	the entire process

Exhibit 3-14. Research Needs/Alternative Raw Materials/Engineering Top Priority, High Priority, Mid Priority

CATEGORY	BARRIER	NEAR		SNOT
		(0-3 yrs.)	(3-10 yrs.)	(> 10 yrs.)
Product Related	Reluctance to displace existing end product uses		Develop carbohydrate to alkaline process	
Neigheu			Explore new product uses	
	Providing pilot scale samples for application testing is difficult	Combination analysis of application testing	Establish central pilot plant facilities	
			Miniaturize application testing	
Economics	Reluctance to replace existing manufacturing	Examine ways to redeploy existing infrastructure	Develop modular process deployment capabilities	
	infrastructure	Study infrastructure to identify where equipment must be replaced effort		
		Identify specific commodity, chemicals that have large growth potential		
	Industry is too focused on	Total cost assessment	Incubator test facilities to rapidly test	
	short-term	Stack in parallel many of the development steps -combine business and engineering expertise in development teams	designs, etc.	
		Establish	Establish information clearinghouse for different technologies	ologies
		Mor	More application focused verses product focused	
Societal	Unwillingness to try new technologies	-Combine social science and engineering in training students		
		Public recognition of companies involved in this type of work		
		Едиса	Education and demonstration to change society views	S
Policy	Uncertain/unstable tax structure for R&D	Research in econometric models to show government the impact of tax structures		

Appendix A

Workshop Participants

John Ackerman, Argonne National Laboratory

Hussain Al-Ekabi, Science & Technology Integration, Inc.

Joseph Allison, AutoClave Engineers

Sten-Håkon Almström, Electrolux-Wascator AB

K.R. Amarnath, EPRI

Paul Anastas, Environmental Protection Agency

Mark Anderson, BOC Gases

Merrick Andlinger, Pure Energy Corporation

Klas Bäck, AGA USA

Frank Baglin, University of Nevada

Jeffrey Baird, ARCO Chemical

Tom Baker, Los Alamos National Laboratory

Karin Bartels, Degussa Corporation

Lauren Bartlett, Environmental Protection Agency

Edwin Bassler, Raytheon Corporation

Eric Beckman, University of Pittsburgh

Jacqueline Bélanger, Environment Canada

Jack Belluscio, Global Technologies, LLC

Ray Bilski, Chemical Information Services

Jeremy Boak, Los Alamos National Laboratory

Joseph Bozell, National Renewable Energy

Laboratory

Marion Bradford, A.E. Staley Manufacturing Company

Joseph Breen, Green Chemistry Institute

Joan Brenneke, Notre Dame University

Vincent Brice, Akzo Nobel, Inc.

Raymond Brusasco, Lawrence Livermore

National Laboratory

Steven Buelow, Los Alamos National Laboratory

Charles Byers, Isopro International

James Capistran, University of Massachusetts

Ruben Carbonell, North Carolina State University

Joseph Carra, US Environmental Protection

Agency

Sidney Chao, Raytheon Environmental Systems,

Inc

Liaohai Chen, Los Alamos National Laboratory

Lalit Chordia, Thar Designs, Inc.

Howard Clark, ASME International

Geoffrey Coates, Cornell University

Terry Collins, Carnegie Mellon University

David Costa, Los Alamos National Laboratory

Bruce Cranford, CCR

Alan Curzons, Smthkline Beecham

Donald Darensbourg, Texas A&M University

Robert Davidson, 3M CorporationDaniel DuBois, National Renewable Energy Laboratory Jayesh Doshi, DuPont, Inc.

Kevin Edgar, Eastman Chemical Company

A. Gwen Eklund, EPRI

Douglas Elliott, Pacific Northwest National Laboratory

Lawrence Farrar, Montec Associates, Inc.

Guiseppe Fazio, Nuova COMECO2 S.p.A.

Guiseppe Fedegari, Fedegari Autoclavi, S.p.A.

Stephen Fitzpatrick, Biofine/Biometics Inc.

Peter Foller, PPG

Thomas Foust, Idaho National Engineering and Environmental Laboratory

Etsuko Fujita, Brookhaven National Laboratory

Mehmet Gencer, B.F. Goodrich

Dorothy Gibson, University of Louisville

Michael Gonzalez, US Environmental Protection Agency

Douglas Haseltine, Eastman Chemical Company

Richard Helling, Dow Chemical Company

David Henton, Cargill-Dow Polymers

Darryl Hertz, Kellogg Brown & Root, Inc.

Bette Hileman, Chemical & Engineering News

Norman Hinman, BC International Corporation

Dennis Hjeresen, Green Chemistry Institute/ Los Alamos National Laboratory

Nancy Ho, Purdue University

Shuen-Cheng Hwang, BOC Gases

Larry Ito, Dow Chemical Company

Gunilla Jacobson, Los Alamos National Laboratory

Judy Jarnefeld, NYSERDA

Philip Jessop, University of California-Davis

Karl Johnson, University of Pittsburgh

Keith Johnston, University of Texas

Roger Jones, Supramics Company

John Kerr, Lawrence Berkeley National Laboratory

Laura Kramer, Los Alamos National Laboratory

Richard Kraus, Dow Chemical Company

Anil Kumar, Prairie View A&M University

Julian Lakritz, Global Technologies, LLC

Myung Lee, Savannah River Technology Center

Donald Lester, MiCell Technologies

Philip Lester, Genetech, Inc.

Chao-Jun Li, Tulane University

Viorica Lopez-Avila, Midwest Research Institute

Garry Lowe, Wittemann Company, Inc.

F.A. Luzzio, University of Kentucky at Louisville

Lee Lynd, Dartmouth College

Zenon Lysenko, Dow Chemical Company

Kimberly Magrini, National Renewable Energy

Laboratory

Amy Manheim, US Department of Energy

Alexander Matthews, Kansas State University

Michael Matthews, University of South Carolina

Paul Maupin, US Department of Energy

T. Mark McCleskey, Los Alamos National

Laboratory

William McGhee, Monsanto

Paulette Middleton, RAND Environmental Science

and Policy Center

Melissa Miller, Los Alamos National Laboratory

Luc Moens, National Renewable Energy

Laboratory

Steven Nagamatsu, Itochu Aviation, Inc.

Trueman Parish, Eastman Chemical Company

David Park, AGA Gas Inc.

Bernard Penetrante, Lawrence Livermore

National Laboratory

David Pesiri, Los Alamos National Laboratory

Gene Petersen, National Renewable Energy

Laboratory

Gordon Plishker, Sam Houston State University

Alexander Pokora, Organic Technologies

Steven Rice, Sandia National Laboratory

Dennis Riley, Monsanto

Lloyd Robeson, Air Products and Chemicals, Inc.
Raymond Robey, Praxair, Inc.
Robin Rogers, University of Alabama
David Ross, SRI International
James Rubin, Los Alamos National Laboratory
Charles Russomanno, U.S. Department of Energy

Endalkachew Sahle-DeMessie, US Environmental Protection Agency Erik Sall, Monsanto Company Anthony Sammelis, Eltron Research, Inc. Arnold Schaffer, Phillips Petroleum Company

Thomas Sciance, Sciance Consulting Services, Inc.

Kenneth Seddon, Queens University of Belfast